### INTRAOPERATIVE RADIOTHERAPY FOR SOFT TISSUE SARCOMAS OF THE EXTREMITIES RESULTS OF THE SPANISH POOLED ANALYSIS

Alfredo Polo (1) & Felipe Calvo (2)

On behalf of the Spanish Sarcoma Pooled Analysis

(1) Ramon y Cajal University Hospital(2) Gregorio Marañon University Hospital

### WHY A SPANISH POOLED ANALYSIS?



#### SPANISH POOLED ANALYSIS - SARCOMA

Aim: pooled data analysis of patients treated with multimodal concept consisting of maximal resection and IOERT with or without postoperative irradiation



1991-2007, 320 patients, Heidelberg, Marañón, CRO Aviano

Local control 82% (5-y), survival @ 5-y R2 23% vs 75% p<0,01

Local control ≥ 15Gy (p<0,05), R2 45% vs 77% (p<0,01)

### POOLED ANALYSIS



302 patients treated from 1985 to 2011



#### LOCAL RELAPSE FREE SURVIVAL





 • E Calvo FA, Sole CV, Polo A et al. Limb-sparing management with surgical resection, external-beam and intraoperative electron-beam radiation therapy boost for patients with primary soft tissue sarcoma of the extremity : A multicentric pooled analysis of long-term outcomes. Strahlenther Onkol. 2014

 • E Calvo FA, Sole CV, Cambeiro M et al. Prognostic value of external beam radiation therapy in patients treated with surgical resection and intraoperative electron beam radiation therapy for locally recurrent soft tissue sarcoma: a multicentric long-term outcome analysis. Int J Radiat Oncol Biol Phys. 2014;88:143-150.

• Sole CV, Calvo FA, Polo A et al. Anticipated intraoperative electron beam boost, external beam radiation therapy, and limb-sparing surgical resection for patients with pediatric soft-tissue sarcomas of the extremity: a multicentric pooled analysis of long-term outcomes. Int J Radiat Oncol Biol Phys. 2014;90:172-180.

Sole CV, Calvo FA, Cambeiro M et al. Intraoperative radiotherapy-containing multidisciplinary management of trunk-wall soft-tissue sarcomas. Clin Transl Oncol. 2014

DOI 10.1007/s12094-014-1157-y Intraoperative radiotherapy-containing multidisciplinary Clin Transl Oncol management of trunk-wall soft-tissue sarcomas C. V. Sole · F. A. Calvo · M. Cambeiro · A. Polo · A. Montero · R. Hernanz · C. Gonzalez · M. Cuervo D. Perez · M. S. Julian · R. Martinez-Monge Keceivea: عن August 2013/ Accepted: 10 January 2014 © Federación de Sociedades Españolas de Oncología (FESEO) 2014 Received: 30 August 2013 / Accepted: 10 January 2014 Prognostic Value of External Beam Radiation Clinical Investigation: Sarcoma in Patients Treated With Surgical Resection a Intraoperative Electron Beam Radiation Thera Recurrent Soft Tissue Sarcoma: A Multicent Long-Term Outcome Analysis Felipe A. Calvo, MD, PhD, \*/ Claudio V. Sole, MD, \*/ Maurici relipe A. Calvo, MD, PND, PND, Claudio V. Sole, MD, Maurici Angel Montero, MD, Alfredo Polo, MD, PhD, Carmen Gonzal Miguel Cuervo, MD, Mikel San Julian, MD,\*\* Jose L. Garcia Clinical Investigation International Journal of Radiation Oncology Anticipated Intraoperative Electron Beam Boost, biology • physics External Beam Radiation Therapy, and Limband Rafael Martinez-Monge, MD, PhD<sup>§</sup> \*Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid Complutance University Madrid Carrin Commiss of Padiation Oncology Institute d www.redjournal.org Semiler of Uncology, nospital General Universitario Gregorio Maranon, Maari Complutense University, Madrid, Spain; Service of Radiation Oncology, Instituto d Semiler of Rediction Oncology, Clinica Universitation Universitation of Neurophysical de Neurophysical Sparing Surgical Resection for Patients with Complutense University, Maaria, Spain; Service of Kaaiation Uncology, Instituto C Service of Radiation Oncology, Clínica Universitaria, Universidad de Navarra, Par Oncologii, Nacaital Universitaria Parada y Catal Universidad de Navarra, a Alada de Navarra, Par Service of Raaiation Uncology, Linita Universitaria, Universiaaa ae Navarra, Pai Oncology, Hospital Universitario Ramón y Cajal, Universidad de Alcala, Madrid, S Nacasital Canada Universitaria Canada Manada Canada Estimate Canada A Pediatric Soft-Tissue Sarcomas of the Extremity: uncology, nospital universitario kamon y cajal, universiaaa ae Alcala, Maaria, S Hospital General Universitario Gregorio Marañón, Madrid, Spain; #Service of Orth Hospital General Universitario Gregorio Maranon, Maaria, Spain; "Service of Orthopedic General Universitario Gregorio Marañón, Madrid, Spain; \*\*Service of Orthopedic A Multicentric Pooled Analysis of Long-Term CrossMark ueneral Universitario Gregorio Maranon, Maaria, Spain; \*\*Service of Urthopeaic Universitaria, Universidad de Navarra, Pamplona, Spain; and <sup>th</sup>Service of Gener Universitaria, Gregoria Maranéa, Madrid Spain **Outcomes** Received Jul 8, 2013, and in revised form Sep 2, 2013. Accepted for publication Oct 15, Universitario Gregorio Marañón, Madrid, Spain Claudio V. Sole, MD, \*\*\*\* Felipe A. Calvo, MD, PhD, \*\*\* Alfredo Polo, MD, PhD,<sup>8</sup> Mauricio Cambeiro, MD, PhD,<sup>11</sup> Ana Alvarez, MD, Carmen Gonzalez. MD, Jose Gonzalez

### RESULTS OF THE POOLED ANALYSIS FOR THE EXTREMITIES SUBGROUP

# **DISTRIBUTION: TUMOR LOCATION** Lower extremities 85% Upper extremities 15%

# **DISTRIBUTION: PRIMARY vs. RECURRENT** Primary 89% Recurrent 11%

#### PATIENT AND TUMOR CHARACTERISTICS

| CHARACTERISTIC         |                                | VALUE      |
|------------------------|--------------------------------|------------|
| Candar                 | Gandar                         |            |
| Gender                 | Female                         | 72(52%)    |
| Age at diagnosis       | Median                         | 52 у.      |
|                        | Synovial sarcoma               | 16         |
|                        | Leiomyosarcoma                 | 20         |
| l l'atala sia tura     | Malignant fibrous histiocytoma | 40         |
| HISTOlOgic type        | Liposarcoma                    | 54         |
|                        | Sarcoma NOS                    | 12         |
|                        | Other                          | 55         |
|                        | G1                             | 39(19%)    |
|                        | G2                             | 51 (25%)   |
| Histologic grade       | G3                             | 87 (44%)   |
|                        | G4                             | 2 (1%)     |
| Largest tumor diameter | Median                         | 10 cm.     |
|                        | Range                          | 1 - 33 cm. |
|                        | IA                             | 4          |
|                        | IB                             | 36         |
|                        | IIA                            | 13         |
| AJCC stage             | IIB                            | 38         |
|                        | III                            | 60         |
|                        | IV                             | 5          |
| Tumor lesstion         | Upper extremities              | 29 (14%)   |
|                        | Lower extremities              | 168 (86%)  |
|                        | Primary                        | 159 (80%)  |
| Primary vs. Recurrent  | Recurrent                      | 38 (19%)   |

**TREATMENT CHARACTERISTICS** 

| CHARACTERIST        | IC        | VALUE                                       |
|---------------------|-----------|---------------------------------------------|
|                     | R0        | 158 (80.2%)                                 |
| Resection type      | R1        | 27 (13.7%)                                  |
|                     | R2        | 11 (5.5%)                                   |
| EPDT dooo (Cv)      | Median    | 50 Gy                                       |
| EBRT dose (Gy)      | Range     | 25.2 - 60.4 Gy                              |
| IORT dose (Gy)      | Median    | 12.5 Gy (HRC: 15Gy; HGUGM: 10Gy; CUN: 15Gy) |
|                     | Range     | 7.5 - 20 Gy                                 |
| Total abvaical deca | Median    | 60 Gy                                       |
| lotal physical dose | Range     | 32.7 - 72.9                                 |
| Chemotherapy No     | Yes       | 37 (21%)                                    |
|                     | 155 (79%) |                                             |

#### **IORT CHARACTERISTICS**

| PARAMETER               |       | VALUE       |
|-------------------------|-------|-------------|
|                         | 4     | 13          |
|                         | 6     | 69          |
|                         | 8     | 22          |
|                         | 9     | 5           |
| Electron energy (wev)   | 10    | 7           |
|                         | 12    | 18          |
|                         | 15    | 3           |
|                         | 18    | 1           |
|                         | 5     | 2           |
|                         | 6     | 13          |
|                         | 7     | 8           |
| Aplicator diameter (cm) | 8     | 5           |
|                         | 9     | 27          |
|                         | 10    | 19          |
|                         | 12    | 22          |
|                         | 15    | 8           |
|                         | 1     | 104         |
|                         | 2     | 31          |
|                         | 3     | 1           |
|                         | 4     | 2           |
| Manitar                 | Mean  | 2224        |
|                         | Range | 1083 - 6775 |











|     | LRFS | DMFS | OS  |
|-----|------|------|-----|
| 5у  | 79%  | 65%  | 71% |
| 10y | 76%  | 62%  | 61% |

### FACTORS AFFECTING LRFS



|         | HGUGM | CUN | HRC |
|---------|-------|-----|-----|
| 5yLRFS  | 81%   | 76% | 76% |
| 10yLRFS | 78%   | 73% | -   |
| 20yLRFS | -     | 70% |     |

#### PRIMARY vs. RECURRENT TUMOR



|         | Primary | Recurrent |
|---------|---------|-----------|
| 5yLRFS  | 83%     | 81%       |
| 10yLRFS | 72%     | 62%       |



Years

|         | R0  | R1  |
|---------|-----|-----|
| 5yLRFS  | 86% | 57% |
| 10yLRFS | 85% | 47% |
| 20yLRFS | 80% | -   |

### FACTORS AFFECTING DMFS

#### DISTANT METASTASES FREE SURVIVAL



|         | Local control | Local relapse |
|---------|---------------|---------------|
| 5yLRFS  | 72%           | 51%           |
| 10yLRFS | 68%           | 51%           |

## DOSE - RESPONSE

**RESECTION STATUS: R0 vs. R1-R2** 



|         | R0  | R1-R2 |
|---------|-----|-------|
| 5yLRFS  | 86% | 57%   |
| 10yLRFS | 85% | 47%   |
| 20yLRFS | 80% | -     |

#### **RESECTION STATUS: R0 vs. R1-R2**

#### DOSE STATISTICS: R0 vs. R1-R2



Years

|         | R0  | R1-2 |
|---------|-----|------|
| 5yLRFS  | 86% | 57%  |
| 10yLRFS | 85% | 47%  |
| 20yLRFS | 80% | -    |

|                        | R0   | R1-2 |
|------------------------|------|------|
| Median dose IORT (Gy)  | 12.5 | 12.5 |
| Median dose EBRT (Gy)  | 50   | 50   |
| Median total dose (Gy) | 60   | 60   |

#### **PHYSICAL DOSE - R0**

**PHYSICAL DOSE - R1-R2** 









Int. J. Radiation Oncology Biol. Phys., Vol. 46, No. 2, pp. 507–513, 2000 Copyright © 2000 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/00/\$-see front matter

PII S0360-3016(99)00330-2

#### **PHYSICS CONTRIBUTION**

#### A SIMPLE METHOD OF OBTAINING EQUIVALENT DOSES FOR USE IN HDR BRACHYTHERAPY

#### SUBIR NAG, M.D., AND NILENDU GUPTA, PH.D.

Division of Radiation Oncology, Arthur G. James Cancer Hospital and Research Institute, Ohio State University, Columbus, OH

$$BED = nd \left[ 1 + \frac{d}{(\alpha/\beta)} \right]$$
(1)  
$$D_{Eq} = \frac{BED}{\left( 1 + \frac{d_{REF}}{(\alpha/\beta)} \right)}$$
(2)



#### **MARGIN STATUS - R0**



NONLINEAR FIT (LOGISTIC 4p) - R0



|             | 5yLC | 10yLC | 20yLC |
|-------------|------|-------|-------|
| BED ≥ 80    | 90%  | 90%   | 90%   |
| BED 55 - 80 | 86%  | 82%   | 58%   |
| BED < 55    | 80%  | 60    | 58%   |





**MARGIN STATUS - R1** 



Years



|          | 5yLC | 10yLC | 20yLC |
|----------|------|-------|-------|
| BED ≥ 65 | 80%  | 53%   | -     |
| BED < 65 | 51%  | 38%   | -     |





#### MARGIN STATUS - COMBINED R1 and R2



NONLINEAR FIT (LOGISTIC 4p) - COMBINED R1-R2



|          | 5yLC | 10yLC | 20yLC |
|----------|------|-------|-------|
| BED ≥ 92 | 80%  | 80%   | -     |
| BED < 92 | 58%  | 38%   | -     |





**SUMMARY - LOGISTIC FIT** 



|       | R0     | R1    | R1-R2 |
|-------|--------|-------|-------|
| TCD50 | 20,75  | 37,02 | 56,32 |
| σ50   | 0,0849 | 0,075 | 0,057 |
| γ50   | 1,76   | 2,77  | 3,21  |

## PREDICTIVE MODELS

MODEL 1 - UNSUPERVISED





MODEL 1 - UNSUPERVISED



Years

MarginStatus(R0)&BED-Total<41,6 MarginStatus(R0)&BED-Total>=41,6 MarginStatus(R2, R1)&BED-Total<92 MarginStatus(R2, R1)&BED-Total>=92

**MODEL 2 - SUPERVISED** 





**MODEL 2 - SUPERVISED** 



| MarginStatus(R0)&BED-Total<92      | - |
|------------------------------------|---|
| MarginStatus(R0)&BED-Total>=92     | - |
| MarginStatus(R2, R1)&BED-Total<92  | - |
| MarginStatus(R2, R1)&BED-Total>=92 | - |

# DISCUSSION



Dimopoulos JC, Potter R, Lang S et al. Dose-effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy. Radiother Oncol. 2009;93:311-315.



**Fig. 1.** Dose-response relationships (D90 in the HR CTV) for local control in the total patient population (left panel), for group 2 (large tumours, middle panel) and for group 2b (large, non-responding tumours, right panel). Particular values of the curves are presented in Table 3.

Stock RG, Stone NN, Cesaretti JA, Rosenstein BS. Biologically effective dose values for prostate brachytherapy: effects on PSA failure and posttreatment biopsy results. Int J Radiat Oncol Biol Phys. 2006;64:527-533.



Stock R, et al. A Dose-response study for I-125 prostate implants. IJRO 1998; 41: 101



TCD50 = 84.19 Gy $\sigma 50 = [-0.0397]$  TCD50 = 80.60 Gy $\sigma 50 = [-0.0312]$ 

Our

series

Martinez AA, Gonzalez J, Ye H et al. Dose escalation improves cancerrelated events at 10 years for intermediate- and high-risk prostate cancer patients treated with hypofractionated high-dose-rate boost and external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:363-370.

| Dose group | Group                 | No. of cases $(n = 472)$ | Mean follow-up<br>(years) | Median follow-up<br>(years) | Range<br>(years) | BED ( $\alpha/\beta$ of 1.2)<br>P-EBRT plus HDR |
|------------|-----------------------|--------------------------|---------------------------|-----------------------------|------------------|-------------------------------------------------|
| Low dose   | 5.5 Gy x 3 fractions  | 26                       | 11.2                      | 11.2                        | 2.1-17.0         | 215 Gy                                          |
|            | 6.0 Gy x 3 fractions  | 21                       | 10.3                      | 10.9                        | 1.1–16.1         | 231 Gy                                          |
|            | 6.5 Gy x 3 fractions  | 32                       | 10.5                      | 10.9                        | 2.0-15.0         | 248 Gy                                          |
|            | 8.25 Gy x 2 fractions | 44                       | 8.2                       | 8.9                         | 1.5-13.3         | 253 Gy                                          |
|            | 8.75 Gy x 2 fractions | 44                       | 8.7                       | 9.3                         | 3.4-12.3         | 268 Gy                                          |
| High dose  | 9.50 Gy x 2 fractions | 111                      | 8.3                       | 9.7                         | 1.2–11.9         | 292 Gy                                          |
| C          | 10.5 Gy x 2 fractions | 125                      | 6.2                       | 7.0                         | 0.4–11.0         | 327 Gy                                          |
|            | 11.5 Gy x 2 fractions | 69                       | 6.0                       | 6.2                         | 0.4–9.3          | 366 Gy                                          |
| All cases  | 2                     | 471                      | 7.8                       | 8.2                         | 0.4–17.0         | 2                                               |

Table 3. Patient follow-up times by dose bin

Martinez AA, Gonzalez J, Ye H et al. Dose escalation improves cancerrelated events at 10 years for intermediate- and high-risk prostate cancer patients treated with hypofractionated high-dose-rate boost and external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:363-370.



Fig. 2. Freedom from clinical failure by HDR dose level for all cases (n = 472).

- ⊱LQ model can be applied also to large doses per fraction
- Dose-response relationship can be obtained for cervix and prostate model

# CONCLUSION

• A dose-response relationship has been described for sarcoma of the extremities

• Sensitivity analysis id needed (different alfa-beta, repair halftimes, and irradiation time)

• External data are needed to validate the model

### WHAT IS NEXT? ROADMAP

• Sensitivity analysis to fit the model to an optimal parameter set

• & Validation of the model against an external data set (anyone in the room?)

• ⊱• Include volumetric data (Vref, D90... using Radiance)

### WHAT IS NEXT? VOLUMETRIC ANALYSIS



| CUN                                                                                   | HRC                                                                                                                                                                 | HGUGM                                                                                                                        |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Rafael Martínez Monge MD, PhD<br>Mauricio Cambeiro MD, PhD<br>Mikel Sanjulian MD, PhD | Alfredo Polo MD, PhD<br>Angel Montero MD, PhD<br>Raúl Hernanz MD<br>Alfredo Ramos MD, PhD<br>Damian Pérez Aguilar MD<br>Ignacio Sánchez MD<br>Rafael Colmenares MSc | Felipe Calvo MD, PhD<br>Carmen González MD, PhD<br>Ana Alvarez MD<br>Claudio Solé MD<br>Miguel Cuervo MD<br>José González MD |

### THANKS FOR YOUR ATTENTION!