

PROGRAMME FINAL ORGANIZATION FACULTY

8th International ISIORT Conference September 25-27, 2014 Cologne/Germany Cologne Marriott Hotel

UniversitätsKlinikum Heidelberg

New developments in IORT The Physics View

Frank W. Hensley Universitätsklinikum Heidelberg RadioOnkologie

D 69120 Heidelberg, Germany

frank_hensley@med.uni-heidelberg.de

Overview

Changes in IORT :

the transformation from extending surgical margins to treating an extended PTV

- Dose coverage of an extended PTV
- What can IORT technology do?

00

A change in paradigm:

Extending surgical margins:

Macroscopic tumor removed,

but unresectable rest or infiltrated tumor bed remain

- Clinical decision on tissues which require radiation to improve surgical result
- ➔ Typically a few mm of tissue in the tumor bed
- Further treatment decided later on base of clinical development

Treating an extended PTV:

Evidence from studies that infiltrated areas must be treated

Not completely surgically resectable

Can be treated later with EBRT (and chemo)

or

Can be treated immediatly during IORT

- ➔ Preparation and treatment of an extended PTV
- → Requirements on dose coverage comparable to EBRT

UniversitätsKlinikum Heidelberg

Treating an extended PTV : Target preparation

- coverage of complete target with prescribed dose at 90% isodose
 - selection of aplicator
 - selection of beam energy
- + documentation of all steps

UniversitätsKlinikum Heidelberg Dose coverage of an extended PTV

Dose coverage of an extended PTV

80% Volume decreases with aplicator size & with energy

ISIORT Cologne 2014

ШШ

ISIORT Cologne 2014

Treating an extended PTV : Target preparation

Reitsamer / Sedlmayer

ISIORT Cologne 2014

IORT planning system

IORT Imaging

PAIR with non-robotic couch / OP table

IORT Imaging

needed:

UniversitätsKlinikum Heidelberg

FOV :

C-arm CBCT

drapes / sterility

metal, & other artifacts image distortions

- Correct calculation of Hounsfield units / density
- Time for: imaging reconstruction segmentation planning
 - ? Segmentation of IORT target ?

Xa

Dose coverage and IORT technology

Different machines have different advantages and disadvantages:

- Penetration
- Shielding requirements
- Mobility
- Set-up procedures
- Beam stop & table placement
- Monitor stability
- Energy stability
- Radiation Workload
 Dose consumption for QA !

→ No single IORT machine is ideal für all purposes

➔ possibly several technologies should be available for an extended IORT program

It is time to develop IORT towards treating

- individually adapted
- confomal
- extended

target volumes

MANNA

Flat applicator

INTRABEAM

No single IORT machine is ideal für all purposes possibly several technologies should be available for an extended IORT program