

Evaluation of intraoperative imaging alternatives for IOERT

Verónica García-Vázquez (vgarcia@hggm.es)

E. Marinetto, FA. Calvo, E. Alvarado, JA. Santos-Miranda, M. Desco, J. Pascau

IOERT dose distribution (I)

- INOVATING SOLUTIONS
- Dosimetric planning (radiance, 900)
 - o Radiation attenuation for each tissue type estimated from CT values → Preoperative CT image
- Real treatment
 - Retraction and displacement of structures, tumor resection and the use of protections

IOERT dose distribution (II)

Intraoperative imaging?

CT images

Objective

 Evaluate the image quality offered by different CT devices when they are used to estimate dose distribution for IOERT procedures

Materials and Methods (I)

- Gold standard
- Aquilion/LB
- Multi-slice helical CT (16 slices)
- FOV 70 cm
- Gantry aperture 90 cm

≈ C-ARM

- O-ARM

- CBCT

- FOV Ø 20 cm x 15 cm
- Gantry aperture 96.5 cm

KVCT + LINAC

- TrueBeam
- CBCT
- FOV 46 cm x 46 cm x 16 cm
- Distance source-detector: 150 cm

Mobile CT

- BodyTom
- Mobile CT
- 32 slice CT scanner
- FOV 60 cm
- Gantry aperture 85 cm

Materials and Methods (II)

• Phantoms

Model 062

Model 062 Includes

Quantity	Model No.	Description	Physical Density	Electron Density Per cc x 10 ²³	RED (Relative t		
1	06202	PHANTOM HEAD (Center Section)	1.01	3.346	1.00		
1	00202	PHANTOM BODY (Outer Ring)	1.01	3.346	1.00		
INSERTS							
1	06203	H ₂ O SYRINGE	1.00	3.340	1.00		
2	06204	Lung (Inhale)	0.20	0.634	0.19		
2	06205	Lung (Exhale)	0.50	1.632	0.48		
2	06206	Breast (50/50)	0.99	3 261	0.97		
2	06207	*Dense Bone 800mg/cc (Embedded)	1.5	1.8			
2	06208	Trabecular Bone 200mg/cc	1.1	1.6			
2	06209	Liver	1.0	14			
2	06210	Muscle	1.0				
2	06211	Adipose	0.9	1.2			
2	06213	Distance Marker	1.0 ρ	2)	/		
			(g/cn	1°) 08			

33 cm x 27 cm x 5 cm

o H₂O)

Model 057

Schneider et al, Phys. Med. Biol. 1996

Materials and Methods (III)

• IOERT case

Case 1: Tumour in Pancreas (50 mm, 0°, 15 Gy)

- Comparison
 - CT-to-density conversion curves, Profiles
 - Cumulative dose-volume histograms, Percentage Depth Doses (PDDs), Transverse beam profiles, Gamma criterion → radiance

Results: Profiles

Results: CT-to-density conversion curve

O-ARM adjustment \rightarrow air to -1000 HU and water to 0 HU Stoichiometric calibration*

Plugs \rightarrow 35 cc ROIs \rightarrow 6.3 cc Dense bone \rightarrow 0.5 cc

(*) Schneider et al, Phys. Med. Biol. 1996

Results: Pancreas (I)

Results: Pancreas (II)

Percentage Depth Dose (PDD)

Transverse beam profile (crossline) at 10 mm

- Gamma criterion
 - Lower threshold: 10 % of the maximum dose, 70 % of the maximum dose
 - 3% dose difference and 3 mm distance to agreement (DTA)

	MONTE CARLO		
GAMMA CRITERION (3 mm, 3%)	Dose > 10%	Dose > 70 %	
O-ARM	60.4 %	68.2 %	
TrueBeam	93.4 %	97.7 %	
BodyTom	100.0 %	100.0 %	

Discussion: CT Simulator vs O-ARM

Conclusions

- Several devices studied in terms of dose distribution estimation rather than image quality
- TrueBeam and BodyTom could be used to estimate the IOERT dose distribution in the real treatment (intraoperative scenario)
- O-ARM:
 - Larger FOV than C-ARMs
 - CT-to-density conversion curve \rightarrow Not valid

Acknowledgements

• This work was supported by projects IPT-2012-0401-300000, TEC2010-21619-C04-01, PI-11/02908, TEC2013-48251-C2-1-R and FEDER funds.

Evaluation of intraoperative imaging alternatives for IOERT

Verónica García-Vázquez (vgarcia@hggm.es)

E. Marinetto, FA. Calvo, E. Alvarado, JA. Santos-Miranda, M. Desco, J. Pascau

